総合論文

ハイエントロピー型熱電材料 AgBiSe2-2xSxTexの熱電特性

瀬下亜里*, [†]山下愛智*,**, 藤田武志**,***, 三浦 章****, 片瀬貴義*****, 森吉千佳子*****, 黒岩芳弘*****, 中平夕貴******, 水口佳一*

High Thermoelectric Figure-of-merit and Ultra-low Lattice Thermal Conductivity of New High-entropy-type AgBi(S,Se,Te)₂

by

Asato SESHITA*, [†]Aichi YAMASHITA **, **, Takeshi FUJITA **, ***, Akira MIURA ****, Takayoshi KATASE *****, Chikako MORIYOSHI ******, Yoshihiro KUROIWA ******, Yuki NAKAHIRA *******, and Yoshikazu MIZUGUCHI *

(Received Apr. 25, 2024; Accepted May 11, 2024)

Abstract

Since thermoelectric generators can convert waste heat into electricity, they play an important role in energy harvest. AgBiSe₂ metal chalcogenide is one of the high-performance thermoelectric materials with low lattice thermal conductivity. It is well known that AgBiSe₂ exhibits temperature-dependent crystal structural transitions from Hexagonal to Rhombohedral, and finally Cubic phase. Previous studies revealed the high figure-of-merit ZT in Cubic phase. To decrease phase transition temperature and obtain Cubic phase at lower temperature, we introduced high-entropy alloy (HEA) concept in AgBiSe₂ compound. Here, we present successful synthesis of AgBiSe_{2-2x}S_xTe_x and stabilization of Cubic phase utilizing the HEA concept. Through structural analysis using synchrotron X-ray diffraction, decrease of crystal transition temperature was found with increase in x amount. Electrical and thermal properties of the obtained samples revealed the ultra-low lattice thermal conductivity and high $ZT \sim 0.9$ at 747 K. The discovery of decreasing the phase transition temperature while keeping or improving thermoelectric properties would offer new way for development of high-entropy-type thermoelectric.

Keywords: Thermoelectric materials, High-entropy-type compounds, Material science

1. 緒言

熱電発電は、ゼーベック効果を用いて熱エネルギーを直接電気エネルギーに変換することができる。熱電モジュールは、排熱や身の回りに存在する熱源から発電が可能であるため、省エネルギー技術として注目されている¹⁾. 熱電材料の性能は、下記の無次元性能指数(ZT)で評価される.

$$ZT = \frac{S^2}{\rho \kappa_{\text{tot}}} T \tag{1}$$

Sはゼーベック係数、 ρ は電気抵抗率、 κ いは熱伝導率、Tは絶対温度に対応しており、高い熱電性能を示す材料には、大きいゼーベック係数、小さい電気抵抗率及び熱伝導率が必要であり、ZT=1以上が実用化の目安とされている。

金属カルコゲナイド系熱電材料に分類される AgBiSe₂ は、温度上昇に伴い構造相転移を示し(Fig. 1 参照)、Cubic 構造では低い格子熱伝導率 κ_{lat} に起因して高い ZT を示す 2 - 6 0.

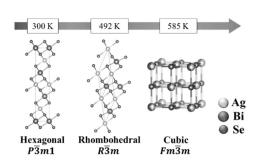


Fig. 1 Crystal structure and space group of AgBiSe₂