Regular Paper

Quaternary Ammonium Salt Additives for High TiO₂ Particle Content in Electrodeposited Zn-TiO₂ Composites

Tomiyuki ARAKAWA¹, Yuya YAMAMOTO², Mitsuru NOZAWA³, Nobuaki WATANABE³ and Ichiro KOIWA^{2,3*}

¹ Institute of Science and Technology, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-ku, Yokohama, Kanagawa 236-8501, Japan

²Graduate School of Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-Ku, Yokohama, Kanagawa 236-8501, Japan

³College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-Ku, Yokohama, Kanagawa 236-8501, Japan

Received Feb. 11, 2017; accepted for publication Apr. 21, 2017

Abstract

Quaternary ammonium salts of four different chemical structures, used as additives in electrodeposition baths, were compared in order to obtain a higher TiO₂ particle content in electrodeposited Zn-TiO₂ composites. Electrodeposition baths containing 0.1 mol/dm³ ZnSO₄·7H₂O, 0.2 mol/dm³ MgSO₄, 0.15 mol/dm³ H₃BO₃, and 10g/dm³ TiO₂ powder were prepared. In addition, benzylcetyldimethylammonium chloride (BCDAC), benzyldimethyltetradecylammonium chloride dehydrate, hexadecylpyridinium chloride monohydrate, and benzethonium chloride were introduced to the baths as additives. The titanium content ratio in the Zn-TiO₂ electrodeposited from a bath with 2.0 g/ dm³ BCDAC additives reached 59.9 atomic% at an electrodeposition current density of 500 A/m². Furthermore, a higher TiO₂ content in the Zn-TiO₂ composites caused a greater dendritic aggregation of TiO₂ particles on the surface. These findings suggest that BCDAC containing a benzene ring and a longer group provides a higher TiO₂ particle content in the Zn-TiO₂ composites, and more dendritic structure.

Keywords: Electrodeposition, Zn-TiO₂, Quaternary ammonium salts, BCDAC

1. Introduction

Zn-TiO₂ composites are expected to improve corrosion resistance [1], furthermore an attractive coating as a photocatalytic material [2]. Several researchers have investigated controlling the co-deposited TiO₂ particle content using various methods [3-6]. Camargo et al. reported the influence of ultrasound on the electrodeposition of Zn-TiO₂ composites in which the TiO₂ particle content was 0.53-0.78 wt% [5]. Achieving a TiO₂ particle content of 2.26 to 5.58 wt% depended on the bath temperature [4]. Also, the hardness of Zn-TiO₂ coatings increased with increasing TiO₂ particles wt% in the coatings in the region of 2.26–5.58 wt% [4]. The photocatalysis is likely to be improved by increasing TiO₂ content, because the increase in TiO_2 content gives the increase in a reaction field and an adsorption activity site. Furthermore, a ZnCl₂-based electrodeposition bath led to a higher TiO_2 particle content in the Zn-TiO₂ composites [5]. In any case, the TiO_2 content needs to be controlled and optimized for the application.

The behavior of particles in the composites is affected by different parameters of the electrodeposition conditions [7]. The introduction of surfactants as additives prevents particles from aggregating in electrolyte solutions, suppress hydrogen generation on cathodes during electrodeposition, and change the surface potential of particles [6]. Surfactants have been used for electrodeposited Ni-Al₂O₃ [8,9], Ni-WC [10], and Ni-SiC [6,11] composites. Cationic surfactants influence the amount of

^{*}Corresponding author: koiwa@kanto-gakuin.ac.jp