Preparation and Evaluation of Copper – Molybdenum Alloy Films
by Using Pulse Electroplating Method

by

(Received Oct. 12, 2016; Accepted Oct. 26, 2016)

Abstract
Heat irradiation is one of the most important problem to produce miniaturized wearable electronic devices such as smart phone. A copper-molybdenum alloy is one of the most promising candidates for heat irradiation materials with low thermal expansion coefficient and high thermal conductivity. The copper-molybdenum alloy films have been investigated by conventional galvanostatic electroplating method. However, there were two main problems. One was lower current density was necessary to obtain higher Mo content films, it caused high cost in practical usage. The other was film properties such as existence of cracks. In this study, a pulse electroplating method has been investigated. There was the region which the Mo content increased with increasing current density, from 1.0 mA/cm² to 10.0 mA/cm². The maximum Mo content, 18.3 at%, was obtained at 10.0 mA/cm² by pulse plating method, on the other hand, the maximum Mo content, 17.0 at% was obtained at 1.0 mA/cm² by galvanostatic electroplating method. Moreover, there was no crack for the Cu-Mo alloy films with high Mo content plated by pulse plating method. The differences were mainly caused existence of Mo-rich phase between small crystallized Cu-Mo grains for the films plated by pulse plating method.

Keywords: Cu-Mo, Alloy, Pulse plating,

1. 紹言
電子デバイスの小型化、軽量化、薄型化により、多くの電子部品が実装されており、発熱量が増大している。そのため、放熱対策が重要となっている。放熱板は、熱膨張係数の差で剥がれ等の問題を生じるため、熱膨張を追づけることが重要である。また、放熱特性だけでなく、ある一定の強度、柔軟性が必要となる。そのため、一つの手法として合金を形成し、上記の特性を兼ねた材料を作製することを挙げられる。本研究では鋼の有する高い熱伝導性とモリブデンが有する低い熱膨張率の両方を持つ材料であるCu-Mo合金を用いた放熱対策を目的としている。現在、Cu-Mo合金はヒートシンク等の材料として報告されている（1-11）。また、作製方法としては、めっき法が期待されており、Ni-Mo合金（12-17）やZn-Mo合金（18-19）の報告がある。我々は電営理論によるめっきでCu-Mo合金の作製を検討してきた（11,20-21）。その問題点としては2点あった。第1点は高いモリ